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Summary

� Decades of atmospheric nitrogen (N) deposition in the northeastern USA have enhanced

this globally important forest carbon (C) sink by relieving N limitation. While many N fertiliza-

tion experiments found increased forest C storage, the mechanisms driving this response at

the ecosystem scale remain uncertain.
� Following the optimal allocation theory, augmented N availability may reduce belowground

C investment by trees to roots and soil symbionts. To test this prediction and its implications

on soil biogeochemistry, we constructed C and N budgets for a long-term, whole-watershed

N fertilization study at the Fernow Experimental Forest, WV, USA.
� Nitrogen fertilization increased C storage by shifting C partitioning away from belowground

components and towards aboveground woody biomass production. Fertilization also reduced

the C cost of N acquisition, allowing for greater C sequestration in vegetation. Despite equal

fine litter inputs, the C and N stocks and C : N ratio of the upper mineral soil were greater in

the fertilized watershed, likely due to reduced decomposition of plant litter.
� By combining aboveground and belowground data at the watershed scale, this study

demonstrates how plant C allocation responses to N additions may result in greater C storage

in both vegetation and soil.

Introduction

Historically high rates of nitrogen (N) deposition across temper-
ate forests in the Northern Hemisphere (Galloway et al., 2008;
Fowler et al., 2013) have often alleviated N-limitation (LeBauer
& Treseder, 2008) and enhanced this important terrestrial car-
bon (C) sink (Pan et al., 2011; Schulte-Uebbing & de Vries,
2017; O’Sullivan et al., 2019). Experimental N additions to
aggrading temperate forests typically cause greater biomass accu-
mulation, decreased soil respiration, and enhanced soil C (Xia &
Wan, 2008; Janssens et al., 2010; Liu & Greaver, 2010; Lovett
et al., 2013; Frey et al., 2014; de Vries et al., 2014). However,
few N addition experiments have persisted long enough at an
ecologically relevant spatial scale to allow a more complete
expression of mechanisms that enhance woody biomass or the
feedback of plant responses to soil biogeochemistry. Plant–micro-
bial interactions significantly shape the biogeochemistry of
ecosystems through the exchange of C for N between plants and
microbes, which modulates plant net primary productivity (NPP)
and alters the stabilization and mineralization of soil C (Chap-
man et al., 2006; Drake et al., 2011; Phillips et al., 2013; Terrer

et al., 2016). Thus, quantifying the responses of both above- and
below-ground ecosystem components to experimental N addi-
tions is needed to determine the mechanisms underlying these
responses, and to predict how these ecosystems will respond to
reduced N inputs and other environmental changes (Schmidt
et al., 2011; Averill & Waring, 2017; Zak et al., 2017).

Such widely observed responses to experimental N additions
(e.g. enhanced aboveground biomass and reduced soil respira-
tion) are generally consistent with the optimal allocation theory
of Bloom et al. (1985), in which plants adjust to optimally parti-
tion resources for the acquisition of the most limiting resource.
Given this theory, ‘subsidies’ of N to a N-limited ecosystem
should reduce the C cost of N acquisition by lessening N limita-
tion, allowing plants to partition C towards acquiring other lim-
iting resources (e.g. light; Johnson et al., 1997; Mohan et al.,
2014). Consequently, we expect elevated N inputs to shift plant
C flux away from belowground N acquisition and towards above-
ground productivity. Given recent research highlighting the
importance of belowground C inputs in fueling decomposition
(Sulman et al., 2017), this allocation shift could initiate a plant–-
soil feedback in which less C flux to mycorrhizas and microbial
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priming of soil organic matter (SOM) decomposition may
increase soil C stocks (Gill & Finzi, 2016; Carrara et al., 2018)
and ultimately reduce mineralization rates of essential plant
nutrients. An important assumption of optimal resource alloca-
tion theory is that resource availability changes slowly through
synchronous changes in C and N fluxes, and it is uncertain
whether the theory applies at the whole-ecosystem scale and in
ecosystems experiencing fairly rapid changes in the environment
– such as N additions (Bloom et al. 1985; Phillips et al. 2013).

Unsurprisingly, many gaps in our empirical knowledge of
ecosystem responses to N deposition are mirrored in Earth system
models (ESMs), at times leading to uncertain predictions of the
future C sink. Recent model improvements have used observa-
tional benchmarks to improve the representation of C–N dynam-
ics (Thornton et al., 2007; Wieder et al., 2015; Terrer et al.,
2019), and plant–microbe interactions (Shi et al., 2016, 2019).
Yet, these models do not capture the commonly observed reduc-
tion in soil respiration with N additions (Janssens et al., 2010).
Specifically, the current generation of ESMs often respond to ele-
vated N deposition with increased NPP to all plant components
and an accumulation of soil C through greater plant litter inputs,
as opposed to a shift in C partitioning and subsequent decrease in

decomposition rates (Ise et al., 2010; Bellassen et al., 2011;
Todd-Brown et al., 2013; Fernández-Martı́nez et al., 2014; Mon-
tané et al., 2017; Sulman et al., 2017). One reason models cannot
capture these widespread ecosystem responses to N deposition is
that their structures lack the plant–microbe interactions control-
ling these patterns (e.g. reduced belowground C flux slowing
microbial decomposition; Fisher et al., 2019; Meyerholt et al.,
2020). Thus, long-term experimental data are invaluable for clari-
fying mechanisms behind ecosystem responses and restructuring
models to better capture the N impacts on global C cycling
(Wieder et al., 2019; Davies-Barnard et al., 2020).

In this study, we utilized data from the whole-watershed N
addition study at the Fernow Experimental Forest (Fernow) in
West Virginia, USA, to examine the effects of > 25 yr of elevated
N inputs on ecosystem C storage and partitioning. The abundant
and long-term data from this site provide a rare opportunity to
assess how N additions influence C and N interactions in a tem-
perate deciduous forest over decadal time scales, and help clarify
mechanisms that may influence the terrestrial C sink and con-
strain global C models. We constructed C and N budgets for
two adjacent watersheds after > 25 yr of ammonium sulfate
((NH4)2SO4) additions to one watershed. From these budgets,
we synthesized the C and N stocks and fluxes of major forest
ecosystem components, estimated changes in plant C allocation
and identified some potential mechanisms behind the ecosystem
response to chronic N additions. More specifically, we used these
budgets to explore three questions: First, how do N additions
affect tree C allocation and ultimately impact productivity over
the long term? Second, does a reduction in the C cost of N
acquisition act as an important mechanism driving changes in
the plant C pools and fluxes with N additions? And third, what
are the impacts of the tree responses to N addition on soil bio-
geochemistry?

Materials and Methods

Study site

Located in the Allegheny Mountain region of the Central
Appalachian Mountains, the Fernow Experimental Forest, near
Parsons, WV (39o104800N, 79o4001200W), hosts over 80 yr of
ecological monitoring and experimentation, including a whole-
watershed N addition experiment (Adams et al., 2012). Eleva-
tions range from 530–1115 m, and slopes are typically between
20 and 50%. Soils are shallow (< 1 m) and predominantly
Calvin channery silt loam (Typic Dystrochrept), underlain with
fractured sandstone and shale. Mean monthly air temperatures
range from c. −2.8°C in January to c. 20°C in July, with a grow-
ing season from May through October (Table 1; Young et al.,
2019). Mean annual precipitation is c. 146 cm and is evenly dis-
tributed across seasons.

The whole-watershed N addition experiment consists of two
adjacent watersheds in a broadleaf deciduous forest (Fig. 1).
From January 1989 through October 2019, one watershed (+N
WS3; 34 ha) received 3.5 g N m−2 yr−1 as (NH4)2SO4, which
was about double the rate of ambient N in throughfall at the start

Table 1 Site characteristics of a reference watershed (Ref WS7) and the
adjacent N-fertilized watershed (+NWS3) in the Fernow Experimental
Forest, WV, USA.

Characteristic Ref WS7 +NWS3

Area (ha) 24 34
Aspect East South
Land use history Upper 12 ha clearcut

(1963); Maintained
barren with herbicides
(1964–1969); Lower
12 ha clearcut (1966);
Entire watershed
maintained barren with
herbicide (1967–1969);
Natural recovery
(1969–present)

Intensive selection cut
(1958–1959, 1963);
patch cuttings totaling
2.3 ha (1968); clearcut
except 3-ha shade strip
along stream (1970);
stream shade strip cut &
natural recovery (1972);
experimental N
additions (1989–2019)

Annual
precipitation
(mm)

1460 1460

Mean air
temperature
(°C)a

9.3 9.3

Cumulative N deposition, 1989–2018 (g N m−2)

Experimental 0 104
Ambientb 26 26
Total 26 131
Soil pHc 4.52 4.12
Top
four dominant
species (by %
basal area)d

Liriodendron tulipifera,
Betula lenta, Prunus
serotina, Acer rubrum

P. serotina, A. rubrum, B.
lenta,Quercus rubra

aFrom Young et al. (2019).
bData from CASTNET total wet + dry N deposition.
cMeans based on a 2011 soil sampling of 0–5 cm mineral soil at 100 points
per watershed (Gilliam et al., 2018).
dData from 2016 to 2017 dendrometer plot census.
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of the experiment (Helvey & Kunkle, 1986) and about quadru-
ple the rate of N deposition at the end of the experiment (NADP
site WV18; CASTNET site PAR107). Fertilizer treatments were
distributed in three unequal applications per yr that roughly
mimicked the temporal pattern of ambient deposition. An adja-
cent watershed (Ref WS7; 24 ha) serves as a reference to the fer-
tilized watershed (Adams et al., 2006). Forest stands in the
watersheds were c. 18–19 yr old when the experiment began
(1989; Table 1). Differences in land use history are summarized
in Table 1, with a major difference being that Ref WS7 was
maintained barren with herbicides for 3–6 yr before recovery,
which likely contributed to the greater baseline streamwater
nitrate (NO3

–) flux before treatment (Fig. S5; see also Kochen-
derfer & Wendel, 1983; Kochenderfer, 2006). Tree species are
similar in both watersheds; however, their relative abundance dif-
fers slightly, with +N WS3 dominated by Prunus serotina Ehrh.
and Acer rubrum L. and Ref WS7 dominated by Liriodendron
tulipifera L., P. serotina and Betula lenta L. (Fig. S1). One N-fix-
ing tree, Robinia pseudoacacia L., is present in both watersheds
and, according to tree censuses in 2016 and 2018, makes up <
7% of the basal area in the Ref WS7 and < 1% in +NWS3.

Assessing the impacts of N additions on watershed C and N
budgets

In this study, we synthesized a variety of data collected by several
researchers over the course of the experiment to construct

watershed-level C and N budgets, to gain insight into the
response of biogeochemical cycles to chronic N additions and to
assess the implications for the temperate forest C sink. These data
were collected over various time scales and locations (Fig. 1), and
the budgets provided an integrated picture of the C and N stocks
after > 25 yr of N additions (typically from data collected
between 2012–2019). In this section we describe the methods
used to determine major C and N pools (e.g. aboveground
biomass, fine root biomass, and soil stocks) and fluxes (e.g.
aboveground net primary productivity (ANPP), foliar N resorp-
tion, fine root production, soil respiration, and inorganic N dis-
charge). The budgets were also used to examine how N additions
influence plant resource economics (e.g. C partitioning and the
C cost of N acquisition). The C and N concentrations of many
ecosystem components were determined using standard methods,
especially Dumas combustion using an elemental analyzer (e.g.
NA 1500 Series 2; Carlo Erba Instruments, Milan, Italy). When
combining datasets across various years or plots, standard errors
were propagated analytically (Methods S1; Lehrter & Cebrian,
2010). Additional details on data collection are found in the Sup-
porting Information (Table S3; Methods S1–S4).

Aboveground biomass and productivity

Aboveground woody biomass was estimated from permanent
growth plot data collected by the USFS Northern Research Sta-
tion (Fig. 1; Adams et al., 2006). Briefly, all trees > 2.54 cm in

(a) (b)

Fig. 1 (a) Map of the Fernow Experimental Forest and (b) data timeline of carbon (C) and nitrogen (N) datasets from the whole-watershed fertilization
experiment (1989–2018). (a) Map shows the locations of the principal study sites in the reference watershed (Ref WS7) and adjacent N-fertilized
watershed (+NWS3). (b) Timeline indicates the years when data were collected (grey bars) and when C and N content were measured on ecosystem
components (star). The plot in (b) was created using BIORENDER (https://biorender.com/).
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diameter at breast height (DBH) were measured and permanently
tagged at 25 randomly located 405-m2 plots established in 1990
(+N WS3) or 1991 (Ref WS7). All trees were re-measured dur-
ing the dormant seasons of 1996, 1999, 2003, 2009, and the
summer of 2018. Diameter at breast height was converted to
biomass increments using species-specific allometric equations
(Brenneman et al., 1978; M. B. Adams, unpublished data). For
species without specific allometric parameters, we used parame-
ters from tree species with similar wood densities (Miles &
Smith, 2009).

To estimate total aboveground woody C and N pools, wood C
and N concentrations were applied to the 2018 growth-plot
biomass estimates. Wood C and N concentrations of the outer 1
cm of bole wood were measured in the summer of 2016 from 10
trees of each of the four dominant tree species in both watersheds
(Table S1). Because wood N concentrations are often greater in
the outer 1 cm of bole wood, we multiplied N content by a
heartwood : sapwood ratio of 0.76 to obtain conservative esti-
mates of wood N stocks (Meerts, 2003). For unsampled tree
species, the watershed average wood C and N concentrations
were used.

Mean annual rates of net aboveground wood C and N accu-
mulation were calculated using the difference between pools of
two consecutive DBH censuses (growth + ingrowth – mortality)
divided by the number of yr between measurements. To estimate
total ANPP, annual leaf litterfall mass data (1989–2015, n = 25)
were converted into C flux estimates and added to net wood C
increments (see Adams, 2008). Neither species composition nor
nutrient concentrations of the long-term litterfall data were mea-
sured, so the C and N inputs of fine litter were estimated from
10 additional litter-collection plots in the autumns of 2015–2017
(Fig. 1; Methods S2; Table S2). Assuming litter mass varied
more from year to year than litter C concentrations, we applied
the mean of all plot-level litter C concentrations (total g of C per
g of leaf litter) across 3 yr (n = 30) to the long-term litterfall
mass data (n = 25). Total ANPP was estimated for each plot and
then averaged to determine the mean watershed ANPP (n = 25),
and standard error was propagated analytically (Methods S1).

Fine root pools, production, and turnover

Methods of fine root measurements are detailed in Table S3.
Briefly, fine root biomass was measured in the organic horizon in
the summers of 2012, 2013 and 2015. In 2012 and 2013, two
subsamples of fine roots in the organic horizon were measured at
seven plots (Fig. 1; W. T. Peterjohn, unpublished data); in 2015,
one organic horizon sample was collected from the same plots plus
three additional plots per watershed (see Carrara et al., 2018).
Fine root biomass was measured in the mineral horizon in 1991,
2013, 2015 and 2016 to depths of 45, 15, 15 and 10 cm, respec-
tively (Adams, 2016; W. T. Peterjohn, unpublished data; Carrara
et al., 2018; B. A. Eastman & W. T. Peterjohn, unpublished
data). In 2016, fine roots in the mineral soil (10 cm) were mea-
sured at 60 locations (six subsamples × 10 plots) per watershed.
Fine roots collected in 2012, 2013 and 2016 were analyzed for C
and N concentration. To compare fine root C and N stocks

between years, the mean C and N concentrations of fine roots
measured in 2012, 2013 and 2016 were applied to 1991 and 2015
fine root biomass. To adjust for the shallower depth of sampling
in 2016 (0–10 cm vs 0–15 cm), the 2016 mass estimates were
increased 150% when performing statistical analysis across years.

Fine root production and turnover were measured for two 1-
year periods from 2016 to 2018 in the top 10 cm of mineral soil
using cylindrical, 2-mm mesh, in-growth cores filled with
homogenized, root-free, mineral soil (B. A. Eastman & W. T.
Peterjohn, unpublished data). Four in-growth cores were
deployed in 10 plots for 1 yr, after which cores were removed,
soil and roots were collected, and new mineral soil was put into
the cores for the second yr. Fine roots (< 2 mm) were hand-
picked, rinsed with deionized water, and dried at 65°C for > 48
h before mass determination. Fine root turnover was estimated
from the annual rates of root ingrowth measured in 2016–2018
divided by the root biomass stock measured in 2016. Fine root C
and N concentrations from 2016 were applied to biomass pro-
duction and turnover.

Annual N uptake and foliar N resorption

To examine how chronic N additions impacted the N acquisition
strategies of trees, we estimated N uptake and its components.
For this study, N uptake is defined as the total flux of soil N to
fine roots and aboveground plant tissues, minus foliar N resorp-
tion, which simplifies to:

Nuptake¼NwoodþNlitterþNfroot Eqn 1

where Nwood is the N content of the annual increment of above-
ground woody biomass (2009–2018); Nlitter is the annual
amount of N returned to the soil in leaf litter (2015–2017),
which assumes resorption from green leaves to litter is in steady
state; and Nfroot is the amount of N associated with annual fine
root N production (0–10 cm; 2016–2018). We calculated N
uptake for each watershed using mean watershed values of wood,
litter and fine root production, and standard error was propa-
gated analytically (Methods S1).

Nitrogen concentrations of canopy leaves were measured in
July 2012 on three leaves from each of four dominant tree species
in 10 plots (Methods S3). In July 2016, an additional 8–11 trees
of another species (Quercus rubra) were sampled for foliar N con-
centration, and watershed means from these data were combined
with the 2012 data. For species not selected for foliar N analysis
(< 15% of total leaf litter mass) we randomly sampled from the
grand mean and standard deviation of N concentrations for each
watershed. Foliage mass was estimated from plot-level leaf litter
mass (from 2016 to 2018). We accounted for mass loss during
senescence by multiplying litter mass by 1.27, the mean temper-
ate deciduous ratio of green to senesced leaf mass (Van Heerwaar-
den et al., 2003). This correction avoids large bias in
underestimating foliar resorption and resorption efficiency. To
estimate the total foliar N pool (Nfoliage), mean N concentrations
by species were multiplied by corrected foliage mass by species at
the plot level, and then averaged for each watershed.
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Nitrogen retranslocation (Nfoliage – Nlitter) and N resorption
efficiency ((Nfoliage – Nlitter) / Nfoliage) were estimated at the plot
level, using data from the years available (foliage in 2012 and
2016, and litter in 2015–2017).

Soil C and N stocks

In 2016, soil C and N concentrations were measured at 15 soil
pits (30.5 × 30.5 cm; Fig. 1) per watershed. Soil samples were
collected from the organic horizon and 0–10, 10–20, 20–30, and
30–45 cm depths of the mineral soil. Samples were sieved to 2
mm, air-dried in a glasshouse, and ground before C and N analy-
sis. Fine earth bulk density (coarse fragment-free; g m−3) was
measured for the 0–5 cm depth of mineral soil at 100 locations
per watershed in 2011 (Gilliam et al., 2018), and for the 15–45-
cm depth at three quantitative soil pits at a nearby site in the Fer-
now (Adams et al., 2004). These measured bulk densities were
regressed on soil depth to calculate values for each depth at which
C and N concentrations were measured (Fig. S2). To account for
differences in the volume of coarse fragments between water-
sheds, we corrected the fine earth bulk density estimates for
coarse fragment volume by horizon as measured in both water-
sheds (n = 25; Adams, 2016). Specifically, fine earth bulk densi-
ties of each soil depth were corrected using the mean proportion
of coarse fragments of the corresponding soil horizon. Total C
and N stocks for mineral soils were calculated for each depth
increment as the product of soil C or N concentrations, depth
increment, and corrected bulk density.

The mean mass of the organic horizon (g m−2) was estimated
from two (25 × 25 cm) measurements at seven plots in June of
2012 and 2013 (Fig. 1). For both watersheds, C and N concen-
trations of the organic horizon measured in 2016 (n = 15) were
multiplied by the mean organic horizon mass per area measured
in 2012 and 2013 to estimate the total C and N stocks. Error in
these estimates represents plot-to-plot variability in both the C
and N concentrations and organic horizon mass.

Soil and stream C and N fluxes

Total belowground C flux (TBCF) consists of the C flux to fine
root production and maintenance, mycorrhizal associations, and
root exudates often directed to the acquisition of N (Hobbie,
2006; Hobbie & Hobbie, 2008; Högberg et al., 2010). We esti-
mated TBCF at 10 plots per watershed (Fig. 1) using a mass bal-
ance approach (Raich & Nadelhoffer, 1989):

TBCF¼Rs� leaf litterC Eqn 2

where annual C inputs from leaf litter (2015) were subtracted
from annual soil CO2 efflux (Rs), assuming that the annual
change in the soil C pool and soil C leaching losses were negligi-
ble (Giardina & Ryan, 2002). In 2016–2017, soil respiration,
temperature, and moisture were measured weekly during the
growing season and biweekly–monthly during the winter in the
same plots where litterfall-C was collected (Fig. 1; Methods S4).
Annual soil CO2 efflux was estimated from an Arrhenius model

of soil respiration vs soil temperature (van’t Hoff, 1898; Lloyd &
Taylor, 1994), applied to data from hourly soil temperature mea-
surements from the same plots (Methods S4).

Carbon losses through leaching were difficult to estimate
due to a lack of measurements, although intermittent measure-
ments of dissolved organic C (DOC) concentrations in
streamwater are available from 2007 (W. T. Peterjohn, unpub-
lished data; Edwards & Wood, 2011). Streamwater DOC con-
centrations were measured 12 times in +N WS3 and eight
times in Ref WS7 in March–November of 2007, and a rough
estimate of DOC discharge was obtained by multiplying the
mean of all concentrations for each watershed by the annual
stream discharge of water.

Soil N inputs from leaf litterfall were measured in 10 plots per
watershed in 2015 and 2016 along with litter C inputs, as
described in ’aboveground biomass and productivity’ section.
Nitrogen inputs from wet and dry atmospheric deposition were
measured at NADP and CASTNET sites WV18 and PAR107.
The +N WS3 also received 3.5 g N m−2 yr−1 from experimen-
tal fertilizations of (NH4)2SO4 (Table 1).

Nitrogen losses in stream water were estimated from continu-
ous streamflow measurements and streamwater chemistry sam-
pled weekly or biweekly since 1983 by the USFS Northern
Research Station near weirs at the base of each watershed
(Edwards & Wood, 2011). Volume-weighted monthly means of
streamwater NO3

– and NH4
+ concentrations from January 1984

through December 2017 were multiplied by the corresponding
total monthly streamwater discharge to calculate export rates
from each watershed. Monthly N export values were summed to
arrive at annual estimates of dissolved inorganic N discharge.
Because we lack consistent measurements of particulate or dis-
solved organic N in streamwater, we were unable to estimate dis-
solved organic N export.

We did not include gaseous N losses in our budget, and from
the few measurements of production rates and emissions of N-
containing trace gases (NO and N2O) in these watersheds (Peter-
john et al., 1996; Venterea et al., 2004), it seems unlikely that
their combined flux would exceed c. 0.1 g N m−2 yr−1. How-
ever, gaseous N losses are difficult to measure, and unmeasured
N2 losses could account for a portion of budget imbalances.

C partitioning and C cost of N acquisition

To determine whether trees shift their C partitioning to favor
aboveground vs belowground C flux under chronic N additions,
we compared C fluxes to ANPP vs TBCF. We also estimated the
C cost of soil N acquisition (Nacq) for each watershed using a
previously published formula (Fisher et al., 2010; Brzostek et al.,
2014; Shi et al., 2019):

Ccostof NacqðgCgN�1Þ¼ ðTBCFðgCmð�2Þ yrð�1ÞÞÞ
ðNacqðgNmð�2Þyrð�1ÞÞÞ Eqn 3

Although TBCF can be expended for other purposes (e.g.
uptake of other resources, and protection from aluminum toxic-
ity), N is typically the most limiting nutrient in forests of this

© 2021 The Authors

New Phytologist © 2021 New Phytologist Foundation

New Phytologist (2021)
www.newphytologist.com

New
Phytologist Research 5



region. Thus, our calculations assume this TBCF is directed for
N acquisition, and these estimates may be conservatively consid-
ered an upper estimate for the C cost of Nacq.

Statistical analysis

To control for initial differences in aboveground C stocks, an
analysis of covariance (ANCOVA) tested for watershed differences
in biomass C, using 1991 estimates of basal area as an indepen-
dent covariate. As wood N stock estimates did not differ between
watersheds in the early years, a one-way analysis of variance
(ANOVA) was used to test for watershed differences in wood N
stocks in recent years. To control for initial conditions and to
account for repeated measures, watershed differences in C produc-
tion in woody biomass and aboveground NPP were assessed with
a repeated measures mixed effects ANOVA where watershed
(WS), year, and WS × year were fixed effects, 1991 basal area was
a covariate, and plot was a random effect. Foliar N pools and N
retranslocation were compared between watersheds using a mixed-
effects ANOVA with watershed as the main effect and year as a
random effect. A one-way ANOVA also tested watershed differ-
ences in soil C and N pools, which had only one observation per
plot (n = 15), and reported error represents plot-to-plot spatial
variability. Watershed differences in litterfall C and N production
(2015–2017) were tested using a nested ANOVA, with watershed
as a fixed effect and year as a random nested effect within water-
shed. Similarly, watershed differences in fine root biomass and soil
respiration were tested using a nested ANOVA, with watershed as
a fixed effect, year as a random nested effect within watershed, and
plot as a random nested effect within watershed.

As is common in watershed-scale and other large ecosystem
experiments, this study is an example of simple pseudoreplica-
tion, as each watershed represents an experimental treatment with
a sample size of one (Hurlbert, 1984). Results should be

interpreted with this in mind, but given the duration and extent
of the treatment, differences found are most likely treatment
effects rather than characteristic differences between watersheds.

Residuals of all ANOVA models were tested for normality
(Shapiro–Wilk test), and where this assumption was not met,
observations were transformed to meet ANOVA assumptions.
When reported, back-transformed means � standard errors are
identified in figures and tables. Most statistical analyses were exe-
cuted in R v.3.6.1 (R Core Team, 2019) using the LME4 package
for mixed-effects ANOVAs (Bates et al., 2015), and least square
means were calculated using the LSMEANS package (Lenth & R.,
2016). Nested ANOVA models were performed in SAS JMP

(JMP, v.14; https://www.jmp.com/en_us/home.html).

Results

Aboveground biomass and productivity

As expected for an aggrading forest, aboveground woody biomass
increased during the experiment in both the fertilized and unfer-
tilized watersheds, though at a faster rate in +N WS3 (Fig. 2a;
F = 8.607, P = 0.005, n = 25). Autumnal leaf litterfall mass
did not differ between watersheds and increased at the same rate
in both watersheds since 1991 (c. 12 g yr−1; Pyear < 0.001; Fig.
2b). From nutrient analyses of 2015 and 2016 leaf litter (Table
S2), we estimated a slightly greater return of litter C and N and a
lower C : N ratio for leaf litter in +N WS3 (Table 2;
F = 32.37, P < 0.001, n = 10). Controlling for the greater basal
area in +NWS3 at the beginning of the study, repeated measures
ANOVA found that ANPP (g C m−2 yr−1) was c. 25% greater
in +N WS3 over the course of the study (Fig. 2c; Table 2;
F = 13.63, P < 0.001, n = 25). Furthermore, the C : N ratio
of woody biomass in the +N WS3 was c. 35% greater (Table 2;
F = 103, P < 0.001, n = 25).
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Fig. 2 Long-term data on aboveground
biomass productivity showed greater rates of
(a) woody biomass stock increase
(growth + ingrowth –mortality), (b) equal
leaf litterfall production, and (c) greater
cumulative aboveground net primary
productivity (ANPP) carbon (C) in the
fertilized watershed. Points are mean values
from 25 plots per watershed in the fertilized
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Belowground biomass and productivity

Fine root biomass varied among years: organic horizon fine root
C stocks were greater in +N WS3 in two of the three years mea-
sured and lower in one (Fig. S3), and mineral fine root C stocks
trended lower in +N WS3 in 1991, 2013 and 2015 but trended
greater when measured to 10-cm depth in 2016 (Fig. S3). Fine
root N stocks followed the same pattern as the C stocks, and the
C : N ratios of fine root pools did not differ between watersheds
(Table 2). However, when patterns in biomass were considered
collectively with their tissue concentrations, fine root C and N
stocks from 2012–2016 were smaller in the organic horizon of
+N WS3 (PC = 0.011, PN = 0.002, n = 18), and not
detectably different in the upper mineral horizon (0–15 cm;
Table 2). Fine root pools of C and N in the upper mineral soil
did not change significantly over time. Furthermore, fine root
production and turnover (0–10 cm depth) did not differ between
watersheds (Table 2).

Annual N uptake and foliar N resorption

Nitrogen pools of green canopy leaves were unexpectedly lower in
+N WS3 (Table 2; F = 4.57, P = 0.037, n = 10). Because

foliar N concentrations did not differ between watersheds when
comparing single species (Table S4), this distinction in foliar N
pools is likely driven by slight differences in species composition,
where low foliar N species (A. rubrum and Q. rubra) are more
abundant in +N WS3, and one particularly high foliar N species
(L. tulipifera) is more abundant in Ref WS7 (Fig. S1; Table S4).
This distinction may be conservative since it does not account for
the greater abundance of R. pseudoacacia (a high N-content, N-
fixing species) in Ref WS7 (Fig. S1). Alternatively, leaf litter mass
in the 10 litter chemistry plots (Fig. 1a) was slightly lower in +N
WS3 for the three years used to estimate foliar mass (2015–-
2017), despite the lack of long-term differences in litter mass.
Even so, foliar N retranslocation was 22% less, by mass, in the
+N WS3 (Table 2; F = 14.46, P = 0.001, n = 10), and the N
resorption efficiency was also lower in +N WS3 (Table 2;
F = 24.93, P < 0.001, n = 10). Despite less N retranslocation
in +NWS3, soil N uptake was similar in both watersheds (Table
2).

Soil C and N stocks

No differences in organic horizon C pools, N pools, or C : N
ratios were detected between watersheds (Fig. 3). Despite

Table 2 Carbon and nitrogen budgets for reference watershed (Ref WS7) and the adjacent N-fertilized watershed (+NWS3).

Ecosystem component Year

Carbon† Nitrogen† C : N ratio

Ref WS7 +NWS 3 Ref WS7 +NWS3 Ref WS7 +NWS3

Pools
Woody biomass (g m−2) 2018 11,475 (634) * 15,364 (801) 28 (6) 29 (8) 416 (10) *** 560 (6.4)
Foliage (g m−2) 2012–2016 262 (49) 228 (42) 12.0 (1.7) * 10.0 (1.4) 21.9 (0.2) 22.3 (0.3)
Fine root biomass (g m−2) 2012–2016
OH 31 (3.5) * 18 (2.5) 1.08 (0.09) ** 0.65 (0.12) 29.4 (2.6) 28.0 (2.3)
Mineral (0–15 cm) 121 (32) 110 (30) 3.6 (0.8) 3.1 (0.7) 28.6 (1.0) 29.4 (0.8)
Soil (OH-45 cm; g m−2) 2016 8838 (513)‡ 9801 (1,055)‡ 638 (40)‡ 656 (59)‡ 13.8 (1.2) 14.9 (2.1)
Total ecosystem pool (g m–2) 20 465 (816) 25 293 (1,325) 671 (40) 689 (60)
Fluxes
Wood production (g m−2 yr−1) 2009–2018 400 (24) *** 545 (42) 1.01 (0.06) 0.97 (0.07) 406 (8) *** 556 (13)
Wood mortality (g m−2 yr−1) 2009–2018 98 (10) 69 (21) 0.14 (0.11) 0.18 (0.19)
Leaf litter input (g m−2 yr−1) 2009–2018 162 (2) 156 (3) 3.8 (0.05) 4.3 (0.08) 43 (1.7) *** 37 (1.8)
ANPP (g C m−2 yr−1) 2009–2018 565 (25) *** 709 (43) – – – –
N uptake (g N m−2 yr−1)a 2009–2018 – – 7.6 (2.4) 8.7 (2.0) – –
Foliar N retranslocation (g m−2 yr−1) 2016 – – 8.2 (1.7) ** 6.0 (1.4) – –
N resorption efficiency (%) 2016 – – 67.8 (9.7) *** 60.5 (9.8) – –
Fine root production (0–10 cm; g m−2 yr−1)b 2016–2018 89 (9) 122 (9) 2.8 (0.2) 3.4 (0.2) 41.0 (1.4) 42.8 (1.0)
Fine root turnover (0–10 cm; yr−1)c 2016–2018 0.92 (0.1) 1.03 (0.1) 0.63 (0.07) 0.62 (0.06) – –
Respiration (g C m−2 yr−1)d 2016–2017 982 (63) * 864 (28) – – – –
TBCF (g C m−2 yr−1)d 2016–2017 838 (67) * 724 (29) – – – –
Stream export (g m−2 yr−1)e 2009–2018 83 73 1.08 (0.06) ** 1.68 (0.09) – –
C cost of N uptake (g C g−1 N)f 110 (12) 83.5 (6.7)

Asterisks represent statistical difference between watersheds (*, P = 0.05; **, P < 0.01, ***, P < 0.001). †Means of pools and fluxes (standard error).
‡ Denotes back-transformed means (maximum SE) of loge-transformed data.
aN acquired from soil: N uptake = N wood increment + N leaf litter + N fine root production(0–10 cm).
bFrom B. A. Eastman et al. (unpublished).
cFrom B. A. Eastman et al. (unpublished), estimated by dividing mean fine root production (over 2 yr) from initial fine root biomass measured before insert-
ing in-growth cores.
dFrom B. A. Eastman et al. (unpublished). TBCF = fine litterfall inputs minus soil CO2-C efflux.
eC leaching losses from 2007 are from intermittent streamwater dissolved organic C concentration measurements.
fC cost of N uptake = TBCF/N-uptake from watershed means, with standard errors propagated analytically.
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measuring mineral soil C and N at 15 locations per watershed,
statistical comparisons between watersheds were strongly affected
by the high spatial variability of mineral soil C (CV = 15–67%)
and N (CV = 48–76%), and no differences between watersheds
were found between total soil C or N pools to a depth of 45 cm.
However, we did find that C pools were 1328 g C m−2 larger,
and N pools were 84 g N m−2 larger in the surface (0–10 cm)
mineral soil of the +N WS3 at α = 0.1 (Fig. 3; FC = 3.588,
PC = 0.069; FN = 4.206, PN = 0.050; n = 15), consistent with
more numerous observations of the 0–5 cm soil increment
(n = 100, P < 0.05; Gilliam et al., 2018). The C : N ratio
of soil was significantly higher for all depth increments in +N
WS3, with the exception of the 0–10 cm increment
(Fig. 3; F10–10cm = 5.353, P10–20cm = 0.028; F20–30cm = 4.81,
P20–30cm = 0.037; F30–45cm = 4.688, P30–45cm = 0.039;
n = 15). However, the C : N ratio of the 0–5 cm of mineral soil,
when measured at 100 locations per watershed, exhibited a
greater C : N ratio (17.6 in +N WS3 vs 14.6 in Ref WS7; see
Gilliam et al., 2018; F = 4.04, P < 0.001, n = 100), underscor-
ing the benefits of a larger sample size when characterizing highly
heterogeneous ecosystem stocks.

Soil and stream C and N fluxes

Measured rates of soil respiration and estimated values for the
annual soil CO2–C efflux were c. 14% lower in +N WS3
from June 2016–May 2018, despite similar soil temperatures
in both watersheds and greater soil moisture in the +N WS3
(Fig. S4; B. A. Eastman & W. T. Peterjohn, unpublished
data). Because aboveground litter inputs and fine root produc-
tion were both similar between the watersheds, this reduced

output (soil respiration) in +N WS3 drove the c. 12% lower
TBCF (Table 2).

Based on infrequent measurements of streamwater dissolved
organic C (DOC) in 2007, we estimated that +NWS3 had 12%
lower C loss in streamwater DOC than Ref WS7 (Table 2).
While quite uncertain, these estimates suggest that the export of
DOC in streamflow may account for over 10% of total C losses
from the ecosystem, and better measurements would be useful
for a more complete picture of TBCF and biogeochemistry at
this site.

As expected, stream-water inorganic N losses were much
greater in +N WS3, representing more than one-third of total N
inputs to that watershed. Cumulative N inputs (ambient + ex-
perimental) in +N WS3 were five times greater than N inputs to
Ref WS7, or c. 100 g N m−2 greater (Table 1). However, cumu-
lative N exports from 1989–2018 in +N WS3 exceeded Ref
WS7 exports by only 12 g N m−2 (Fig. 4). Over a 29-yr period
during this study (1989–2018), the total apparent N retained in
+N WS3 was 98 g N m−2, leading to annual increases in the
ecosystem N stock in the absence of significant gaseous N losses.
From the N mass balance budgets, there was a large missing N
sink in +N WS3 and a comparatively small but substantial
(13 g N m−2) missing N source in Ref WS7 (Figs 4, S5).

C partitioning and C cost of N acquisition

Nitrogen fertilization resulted in a shift in N acquisition strategy
and C partitioning (Fig. 5a). In response to N additions, +N
WS3 retranslocated less foliar N before senescence, acquiring a
greater proportion of total N flux from the soil compared to Ref
WS7 (Fig. 5b). Assuming TBCF represents the maximum C cost
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Fig. 3 Carbon (C) stocks (left), nitrogen (N) stocks (center), and C : N ratios (right) in the organic horizon (top) and surface mineral soil (bottom) of
reference watershed 7 (light green) and fertilized watershed 3 (dark green). Results showed greater C and N stocks in surface mineral soil of + NWS3, and
a greater C : N ratio of deeper mineral soil in +NWS3. Means � 1 SE (error bars). All mineral soil and N stocks present back-transformed means of loge-
transformed data except for the soil C 0–10 cm stock. Given the high spatial variability, the threshold for significant differences was α = 0.1. Asterisks
represent significant differences between watersheds (*, P < 0.10).
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of N acquisition (Fisher et al., 2010; Gill & Finzi, 2016; Terrer
et al., 2016), and considering TBCF was c. 14% less in +N
WS3, we estimated that the maximum C cost of N uptake in +N
WS3 (83.2 g C g N−1) was c. 27 g C g N−1 lower than in Ref

WS7 (110 g C g N−1; Fig. 5c). Thus, partitioning of photosyn-
thate shifted away from belowground components and towards
aboveground woody biomass production with N additions (Fig.
5).

Discussion

We synthesized a unique and diverse set of site-specific informa-
tion to assess how > 25 yr of (NH4)2SO4 additions altered C
and N storage and partitioning at the Fernow Experimental For-
est. Our findings indicate that generalizations from optimal allo-
cation theory (Bloom et al., 1985) can scale to an entire
ecosystem through a shift in N acquisition strategy under
enhanced N inputs. Specifically, we observed greater ecosystem C
storage in aboveground woody biomass (Fig. 2a), less C trans-
ferred belowground (Fig 5d), and increased soil C storage and
soil C : N ratios in the +N WS3 (Fig. 3). The shift in soil stoi-
chiometry (greater C : N), as well as the increased proportion of
plant biomass with high residence times (wood vs leaves and
roots), may have long-term impacts on forest recovery in this
ecosystem and other forests in the northeastern USA by poten-
tially slowing N cycling (Craine et al., 2018; Groffman et al.,
2018).

Increases in aboveground C storage dominated the ecosystem
response to long-term N additions, as most of the c. 24% greater
ecosystem C stock in +N WS3 was due to greater C flux to
woody C (Table 2). This enhanced aboveground C accumulation

Fig. 4 Cumulative watershed nitrogen (N) budgets for reference
watershed 7 (left) and fertilized watershed 3 (right) from 1989 to 2018. N
inputs include experimental N additions (grey; 1989–2017 in +NWS3
only), atmospheric N deposition (white; 1989–2017), and wood N inputs
from mortality (gold; 1990–2018). N outputs include live wood N
accumulation (green; 1990–2018) and inorganic N losses in streamwater
(blue; 1989–2017). Missing source/sink (red) is the difference between all
N inputs and all N outputs. Error bars represent � 1 SE, which was
propagated analytically when summing the fluxes for which error terms
existed (wood mortality and wood accumulation).

(a)

(b) (c) (d)

Fig. 5 Conceptual diagram of interactions
between nitrogen (N) acquisition strategies
and carbon (C) partitioning and
corresponding mean fluxes of C and N. (a)
Conceptual diagram of the interactions
between C partitioning of gross primary
productivity (GPP) to aboveground net
primary productivity (ANPP) and total
belowground C flux (TBCF) and N acquisition
strategies between Ref WS7 (left) and +N
WS3 (right). With greater soil N availability
in +NWS3, less N is retranslocated from
foliage and less C is partitioned
belowground, allowing for greater
partitioning of ANPP. (b) Mean (� SE) flux of
N to meet N requirement from foliar N
resorption and N uptake from soil in Ref WS7
(light green) and +NWS3 (dark green). (c) C
cost of soil N acquisition (mean � SE) in the
reference (light green) and fertilized (dark
green) watersheds. C cost of soil N
acquisition estimated by dividing TBCF by soil
N uptake. N uptake = woody N
accumulation + fine root N production –
litter N flux. (d) C flux to ANPP and TBCF
(mean � SE) for the reference (light green)
and fertilized (dark green) watersheds. TBCF
estimated with the mass balance equation:
total soil respiration – leaf litter-C. Asterisks
represent significant difference between
watersheds (*, P < 0.05).
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was noted in several meta-analyses of N addition experiments on
seedlings and younger trees (Xia & Wan, 2008; Janssens et al.,
2010; Schulte-Uebbing & de Vries, 2017), but this study
demonstrates that this pattern can persist in more mature forests
(see also Pregitzer et al. 2008). Furthermore, we may have under-
estimated the N effect on biomass accumulation because Ibáñez
et al. (2016) found that N fertilization widens the height : DBH
ratio of some trees; this could create a potential bias when using
standard allometric equations that do not include height (such as
those used in this study) in fertilization experiments. Indeed, ter-
restrial LiDAR analysis conducted in 2016 found that trees in the
+N WS3 were 2.4 m taller, on average, than those measured in
WS7 (Atkins et al., 2020). Although stand-level data (including
in-growth and mortality) used in this study found a greater over-
all rate of biomass production with N additions (Fig. 2), this
effect may diminish in the future. Recent tree-ring data for
mature trees of several species document slower growth in the
+N WS3 relative to Ref WS7 (Fig. S6; Malcomb et al., 2020).
Thus, the enhanced cumulative ANPP detected in +N WS3 may
represent an initial positive response by fast-growing and acid-
tolerant P. serotina, but this response may not persist due to a rel-
ative decline in tree growth among several dominant species (Fig.
S6).

Under N limitation, a large proportion of assimilated plant C
can be expended on N acquisition via mycorrhizas and foliar N
resorption (Fahey et al., 2005; Högberg et al., 2010; Gill &
Finzi, 2016). However, following N additions, more N can be
acquired directly by roots through passive uptake, reducing the
partitioning of C for N retranslocation, active transport, or myc-
orrhizal symbioses (Fig. 5a; Vitousek, 1982; Rastetter et al.,
2001; Fisher et al., 2010; Brzostek et al., 2014). Given similar
foliar N pools and, thus, likely similar rates of GPP in these
watersheds, our observation of less foliar N retranslocation
(Table 2) and less mycorrhizal colonization (Carrara et al., 2018)
in +N WS3 suggest greater N uptake directly by roots. This
‘cheaper’ (in terms of C expenditure) strategy for N acquisition
could free up C for woody biomass production (Fig. 5a;
Holopainen & Peltonen, 2002; Wright & Westoby, 2003).
While lower rates of N resorption from leaves in the +N WS3
suggest a lower N use efficiency (Fig. 5, Table 2), we still esti-
mated a stimulation in C storage at the ecosystem scale (roots +
soil + woody biomass) of c. 46 g C per g N experimentally
added over the course of the experiment, which is in the range of
values typically reported in other studies (30–75 g C g−1 N;
Hyvönen et al., 2008; Pregitzer et al., 2008; Sutton et al., 2008).
Given that the C cost of N acquisition in this study was c. 24%
‘cheaper’ in the fertilized watershed, the reduction in C flux
belowground for N uptake in +N WS3 could account for over
half of the enhanced ANPP (Table 2). This shift in C partition-
ing under N additions is consistent with theories and reviews of
photosynthate allocation in plants (Litton et al., 2007).

In addition to the greater woody C accumulation in the +N
WS3, we detected a slightly greater C pool in the surface mineral
soil of +N WS3 (0–10 cm; a = 0.10), despite similar inputs of
fine plant litter. Interestingly, although N additions lowered the
C : N ratio of leaf litter inputs (Tables 2, S2), the C : N ratio of

SOM is greater in +N WS3, suggesting that an important dis-
connect occurred in the soil environment between the stoichiom-
etry of substrates (leaf litter) and products (SOM). This
alteration of organic matter stoichiometry was found by other
studies in temperate forests (Nave et al., 2009; Yanai et al., 2013;
Forstner et al., 2019). A possible explanation for this pattern is
that reduced TBCF slowed the priming of organic matter decom-
position by depriving soil microbes of labile C inputs from
plants, allowing the accumulation of recalcitrant plant material
with high C : N ratios in the surface soil (Kuzyakov, 2010;
Cotrufo et al., 2015; Sulman et al., 2017). Though speculative,
this proposed mechanism is supported by the reductions in soil
respiration (Fig. S4) and mycorrhizal colonization (Carrara et al.,
2018) in the +N WS3. Furthermore, previous studies at this site
measured slower leaf litter decomposition rates (Adams &
Angradi, 1996) and lower ligninolytic enzyme activity in the +N
WS3 – beyond what is expected from the reduced pH in +N
WS3 (Carrara et al., 2018; SanClements et al., 2018). However,
if the decay of any enhanced soil C stock in +NWS3 is inhibited
by N additions, this C pool could become susceptible to decom-
position and promote greater N availability once experimental N
inputs subside. Alternatively, more N-limited trees in Ref WS7
may promote priming through increased TBCF to gain access to
microbially mineralized N, and C losses associated with this
priming could be greater than any reduced potential for SOC for-
mation through TBCF in the +NWS3.

Given the potential for ecosystem-scale interactions that oper-
ate over decades to influence forest ecosystem responses to N
additions, this study highlights the value of long-term, watershed-
scale experiments in gaining insight into how above- and below-
ground components interact and respond to environmental
change. However, there are also limitations to the approach used
in this – and other – watershed-scale studies due to a lack of repli-
cated treatments. In the case of our study sites, causal attribution
is confounded by differences in species composition (Fig. S1) and
land use history (Table 1) that must be carefully considered when
interpreting the results. However, the large dose of added N and
subsequent changes in streamwater nutrient export and soil chem-
istry support our view that the +N WS3 is primarily responding
to the treatment (Adams et al., 2006). Furthermore, there is a
nearby (< 2 km from our study sites), fully replicated, N-fertil-
ization experiment with the same annual N additions as +N
WS3 (Adams et al., 2004). This replicated study has been used to
test observations from the watershed experiment and confirm
many of these responses – including enhanced tree productivity
(Fowler et al., 2015), reduced soil respiration (B. A. Eastman &
W. T. Peterjohn, unpublished data), and lower mycorrhizal colo-
nization and soil enzyme activity (Carrara et al., 2018).

One invaluable feature of watershed-scale studies is the ability
to create mass balance budgets at a broad spatial scale. From the
watershed N budgets we constructed, over our 29-yr study period
(1989–2018), the total apparent N retained in +N WS3 was
98 g N m−2. The accumulation of N in vegetation N pools in
both watersheds was slight (20 g N m−2), explaining only 20%
of the N retention in +N WS3. Changes in soil stocks are very
difficult to measure, even at decadal time scales, and the lack of
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good pretreatment measurements and robust bulk density mea-
surements in these watersheds prevents us from confidently esti-
mating the change in the soil N stock over the experimental
period. However, if the watershed differences in mean soil N
stocks of the top 10 cm of mineral soil (84 g N m−2) indicates a
fertilization effect in the +N WS, this difference could account
for the missing N sink in +N WS3 (Fig. 4). This would be con-
sistent with other N fertilization studies that detected greater soil
C and N stocks in the surface soil layers (Frey et al., 2014; Pregit-
zer et al., 2008; Zak et al., 2008). Alternatively, unmeasured
gaseous N losses and dissolved organic N outputs in streamwater
could account for part of the imbalance (Enanga et al., 2017). In
Ref WS7, the missing source could be attributed to some combi-
nation of the following: N fixation by black locust (poten-
tially c. 1.89 g N m−2; Fig. S7; free-living N fixation
(2.9–14.5 g N m−2; Schlessinger & Bernhardt, 2020); errors in
estimates of wood N – based on only the outer 1 cm of bole
wood; or errors in estimates of gaseous N deposition.

Globally, the positive response of aboveground productivity to
N additions appears to be strongest in temperate forests (Fleischer
et al., 2015; Du & de Vries, 2018), where N limitation may be
the historical norm. Given that the positive growth responses of
forests to increasing atmospheric CO2 and longer growing seasons
are often constrained by N availability and N acquisition strategies
(Norby et al., 2010; Fernández-Martı́nez et al., 2014; Feng et al.,
2015; Smith et al., 2016; Terrer et al., 2019), a mechanistic repre-
sentation of plant controls on soil–microbe interactions – and
their subsequent feedbacks on soil nutrient cycling and plant pro-
ductivity – are necessary for global C models to accurately predict
the potential for forests to mitigate climate change through C
sequestration (Wieder et al., 2015, 2019; Sulman et al., 2018,
2019; Shi et al., 2019). This study provides a unique perspective
on ecosystem-scale C responses to altered N inputs, and the
importance of studying both above- and below-ground responses
to environmental change. Future research focused on clarifying
the mechanisms governing plant–soil interactions and quantifying
the impact of N status on these processes may be critical, because
it is uncertain whether this enhanced C storage will persist in the
future – especially if ecosystem productivity becomes constrained
over time due to changes in the patterns and processes of plant
resource allocation that feedback on soil biogeochemistry.
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